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We derive a closed equation of motion for the current density of an inhomogeneous quantum many-body
system under the assumption that the time-dependent wave function can be described as a geometric defor-
mation of the ground-state wave function. By describing the many-body system in terms of a single collective
field we provide an alternative to traditional approaches, which emphasize one-particle orbitals. We refer to our
approach as continuum mechanics for quantum many-body systems. In the linear response regime, the equation
of motion for the displacement field becomes a linear fourth-order integrodifferential equation, whose only
inputs are the one-particle density matrix and the pair-correlation function of the ground state. The complexity
of this equation remains essentially unchanged as the number of particles increases. We show that our equation
of motion is a Hermitian eigenvalue problem, which admits a complete set of orthonormal eigenfunctions
under a scalar product that involves the ground-state density. Further, we show that the excitation energies
derived from this approach satisfy a sum rule which guarantees the exactness of the integrated spectral
strength. Our formulation becomes exact for systems consisting of a single particle and for any many-body
system in the high-frequency limit. The theory is illustrated by explicit calculations for simple one- and

two-particle systems.
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I. INTRODUCTION

The dynamics of quantum many-particle systems poses a
major challenge to computational physicists and chemists. In
the study of ground-state properties one can rely on a varia-
tional principle, which enables a variety of powerful statisti-
cal methods (in addition to exact diagonalization) such as the
quantum variational Monte Carlo method and the diffusion
Monte Carlo method.! In time-dependent situations, the ab-
sence of a practical variational principle has greatly hindered
the development of equally powerful methods. Yet it is hard
to overestimate the importance of developing effective tech-
niques to tackle the quantum dynamical problem. Such a
technique could allow, for example, to follow in real time the
evolution of chemical reactions, ionization, and collision
processes.

One of the most successful computational methods devel-
oped to date is the time-dependent density-functional theory
(TDDFT), or its more recent version—time-dependent
current-density functional theory (TDCDFT).? In this ap-
proach, the interacting electronic system is treated as a non-
interacting electronic system subjected to an effective scalar
potential (a vector potential in TDCDFT) which is self-
consistently determined by the electronic density (or by the
current density).>* Thus, one avoids the formidable problem
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of solving the time-dependent Schrodinger equation for the
many-body wave function. Even this simplified problem,
however, is quite complex since it involves the determination
of N time-dependent single-particle orbitals—one for each
particle. Furthermore, there are features such as multiparticle
excitations® and dispersion forces® that are very difficult to
treat within the conventional approximation schemes.

An alternative approach, which actually dates back to the
early days of the quantum theory, attempts to calculate the
collective variables of interest, density, and current, without
appealing to the underlying wave function.”~® This approach
we call “quantum continuum mechanics” (QCM) because, in
analogy with classical theories of continuous media (elastic-
ity and hydrodynamics), it attempts to describe the quantum
many-body system without explicit reference to the indi-
vidual particles of which the system is constituted.”

That such a description is possible is guaranteed by the
very same theorems that lie at the foundation of TDDFT and
TDCDFT."-12 Indeed, consider a system of particles of mass
m described by the time-dependent Hamiltonian

H(t)=H,y+ J dri(r)V,(r,1), (1)
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where
ﬁo = 72+ W+ ‘/}0 (2)

is the sum of kinetic energy (f"), interaction potential energy

(W), and the energy associated with an external static poten-
tial Vo(r)

Vo= f drVy(r)i(r), (3)

where 7i(r) is the particle density operator. V,(r,7) is an ex-
ternal time-dependent potential.

The exact Heisenberg equations of motion for the density
and the current-density operators, averaged over the quantum
state, lead to equations of motion for the average particle
density n(r,¢) and the average particle current density j(r,?)

dn(r,t) ==3d,j,(r,1) (4)
and

md,j,(r,0) == n(r,0)d,[Vo(r) + Vi(r,0)] = 3,P ,,(r,1),
(5)

where d, denotes the partial derivative with respect to time
and d, is a short hand for the derivative with respect to the
cartesian component v of the position vector r. Here and in
the following we adopt the convention that repeated indices
are summed over. These equations simply express the local
conservation of particle number [Eq. (4)] and momentum
[Eq. (5)]. The key quantity on the right-hand side of Eq. (5)
is the stress tensor P,,,(r,t)—a symmetric tensor which will
be defined in the next section as the expectation value of a
Hermitian operator, and whose divergence with respect to
one of the indices yields the force density arising from inter-
nal quantum-kinetic and interaction effects.

Now the Runge-Gross theorem of TDDFT guarantees that
the stress tensor, like every other observable of the system, is
a functional of the current density and of the initial quantum
state. Thus, Eq. (5) is, in principle, a closed equation of
motion for j—the only missing piece of information being
the explicit expression for P, in terms of the current density.

In recent years much effort has been devoted to construct-
ing an approximate QCM (Refs. 13-21) and several applica-
tions have appeared in the literature (see Ref. 22 for some
representative examples). All approximation schemes so far
have been based on the local density approximation and gen-
eralizations thereof. In a recent paper’> we have outlined a
novel approach to the construction of an approximate expres-
sion for P,,(r,?), and, more importantly, for the associated
force density —d,P,,(r,t), as functionals of the current den-
sity and the initial state. In this paper we present detailed
derivations and explanations of the formalism introduced in
Ref. 23 and make the connection with TD(C)DFT methods.
We will limit ourselves to the linear response regime, i.e.,
we shall consider systems that start from the ground-state of

the static Hamiltonian I:IO and perform small-amplitude os-
cillations about it. The external potential V,(r,z) will be
treated as a small perturbation. In this regime the equations
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of motion (4) and (5) are conveniently expressed in terms of
the displacement field u(r,¢), defined by the relation

j(l',l) = nO(r)atu(r’t)’ (6)

where n(r) is the ground-state density. It is also convenient
to write the density and the stress tensor as sums of a large
ground-state component and a small time-dependent part, in
the following manner:

n(r,1) = ny(r) + n,(r,1),

P,LLV(r’t) = P,uV,O(r) + P,uv,l (r’t) > (7)

where the equilibrium components, marked by the subscript
0, satisfy the equilibrium condition

no(r)d,Vo(r) + 3,P ,, 0(r) = 0. (8)
Then the two Egs. (4) and (5) take the form
ny(r,1) == d,[ng(r)u,(r,1)] )

and

mno(r)&tzuﬂ(r,t) =—ny(r)d,V,(r,1) —n(r,10)d,Vy(r)
- (9VP/.LV,1(r’t)' (10)

Our task is to find an expression for the force density
3P ,,1(r,1) as a linear functional of u(r,z). If this can be
achieved, then the excitation energies of the system will be
obtained from the frequencies of the time-periodic solutions
of Eq. (10) in the absence of external field (i.e., with V;=0).

It is easy to see that the spatial dependence of these solu-
tions will be proportional to the matrix element of the current
density operator between the ground state and the excited
state in question. This is because, in a many-body system
with stationary states |p),|¢),....[¢),... ([) is the
ground state), and corresponding energies Ey,E,,...,E,...,
the nth linear excitation is described by the time-dependent
state

|o)e ™™ + elaf e (11)

where € is an arbitrarily small “mixing parameter.” The ex-
pectation value of the current-density operator in this state is

(.0 = e(ypli()] g e EE 1 e c. (12)

Thus, in principle, almost all the excitation energies (E,
—E;) of the system can be obtained by Fourier analyzing the
displacement field—the only exception being those excita-
tions that are not connected to the ground state by a finite
matrix element of the current-density operator.

In this paper we will introduce an approximate expression
for the force density

F (0 =-n(r,0)d, Vo) = d,P,,,(r1)), (13)

which appears on the right-hand side of Eq. (10), as a linear
functional of u(r,7). The expression will be presented in
terms of the functional
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Elu] = (yo[ullHo|o[ul), (14)

which is the energy of the distorted ground state |i[ul),
obtained from the undistorted ground state |,) by virtually
displacing the volume element located at r to a new position
r+u(r,r). More precisely, we will show that the equation of
motion for u takes the form

OE,[u]

mig(r)u(r,0) == ny(x) V V, (r.1) - su(r,)’

(15)
where E,[u] is the second-order term in the expansion of
E[u] in powers of u. The functional E,[u] has an exact ex-
pression in terms of the one-particle density matrix and the
pair-correlation function of the ground state, which is a ma-
jor simplification, since ground-state properties, unlike time-
dependent properties, are accessible to computation by a va-
riety of numerical and analytical methods.

Furthermore, we will show that the kinetic part of the
force density functional SE,[u]/Su is local, in the sense that
it depends only on a finite number of spatial derivatives (up
to the fourth) of the displacement field at a given position.
Thus, our equation of motion reduces to a fourth-order dif-
ferential equation for u when interaction effects are ne-
glected. The inclusion of interaction effects leads to the ap-
pearance of nonlocal contributions to the energy and the
equation of motion becomes a fourth-order integrodifferen-
tial equation for the displacement field. However, the com-
plexity of this equation remains essentially unchanged as the
number of particles increases.

Our equation of motion has two especially appealing fea-
tures: (i) it is exact for one-electron systems at all frequen-
cies and (ii) it can be physically justified for generic many-
electron systems at high frequency or, more generally, at all
frequencies for which a collective description of the motion
is plausible. Thus the range of frequencies for which our
approximation makes sense is expected to be wider in
strongly correlated systems than in weakly correlated ones.

We discuss several qualitative features of our equation
(uniform electron-gas limit, harmonic potential theorem) and
present its solution in simple one- and two-electron models,
where the results can be checked against exact calculations.
The results are encouraging. Although we are not able to
resolve all the different excitation energies of the models
under study, we find that groups of excitation characterized
by the same displacement field (up to a proportionality con-
stant) are represented by a single mode of an average fre-
quency, in such a way that the spectral strength of this mode
equals the sum of the spectral strengths of all the excitations
in the group. In this sense our approximation can be viewed
as a (considerable) refinement and extension of the tradi-
tional single-mode approximation for the homogeneous elec-
tron gas to strongly inhomogeneous quantum systems. In
spite of the somewhat limited range of validity of the present
treatment (the linear response regime), we feel that this is an
important first step in a direction that might eventually lead
to the construction of useful force density functionals for
far-from-equilibrium processes.

This paper is organized as follows. In Sec. Il we present a
complete derivation of the linearized equation of motion for
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the displacement field. We begin by deriving a formally ex-
act expression for the force density (Sec. I A), on which we
perform the “elastic approximation” (Sec. II B). The expres-
sion for the force density in the elastic approximation is
worked out in Sec. II C (kinetic part) and Sec. II D (potential
part). A simplified form of the equation of motion, valid for
one-dimensional (1D) systems, is presented in Sec. Il E. Ap-
pendices A and C provide supporting material for this part.
In Sec. III we discuss the relation between quantum con-
tinuum mechanics and time-dependent current-density func-
tional theory. In Sec. IV we show how the linear equation of
motion derived in Sec. II leads to an eigenvalue problem for
the excitation energies. In Sec. IV A we demonstrate the her-
miticity of this eigenvalue problem and the positive definite-
ness of the eigenvalues. In Sec. IV B we connect the eigen-
value problem to the high-frequency limit of the linear
response theory. In Sec. IV C we prove that the first moment
of the current excitation spectrum obtained from the solution
of our eigenvalue problem is exact. Appendices D and E
contain supporting material for this part. In Sec. V we
present a few simple applications of our theory for the exci-
tations of (i) a homogeneous electron gas (Sec. V A) (ii) the
linear harmonic oscillator and the hydrogen atom (Sec. V B),
and (iii) a system of two electrons in a one-dimensional para-
bolic potential interacting via a soft Coulomb potential. The
analytic solution of the last model in the strong correlation
regime is featured in Appendix F. Finally, Sec. VI contains
our summary and a few speculations about future applica-
tions of the theory.

II. LINEARIZED EQUATION OF MOTION
A. Derivation of the force density

In this section we undertake the construction of an ap-
proximate expression for the force density, Eq. (13), as a
linear functional of u. The stress tensor PM,,(r,t), whose di-
vergence determines the force density, is defined as the ex-

pectation value of the stress tensor operator IA’M,,(r) in the
evolving quantum state |i/(7))

Poulr.1) = GHOIP ) 1), (16)
An exact and unambiguous expression for the operator

Isw(r) in an arbitrary system of coordinates is obtained by
considering the universal many-body Hamiltonian

H=T+W (17)

(external potential nor included) in the presence of a “metric
tensor field” g,,(r). As is well known,?* the metric tensor
g,,(r) allows us to express the length ds of an infinitesimal
displacement from r to r+dr in terms the corresponding
increments of the coordinates dr,

ds* =g, (r)dr,dr,. (18)

In ordinary Euclidean space and in Cartesian coordinates
8.u(r)=46,,, independent of position. In general, however, a
non-Euclidean space is characterized by a position-
dependent, symmetric g,,(r). A non-Euclidean metric can
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also be generated by a change of coordinates in a Euclidean
space, as we will see shortly. As an important technical point
we also introduce the tensor g#” as the mverse of g,,, and we
define g as the determinant of g, (so g~ !'is the determinant
of gh?).

The Hamiltonian FAIM undergoes the following changes in
the presence of a nontrivial metrics. First, the laplacian op-
erator d,d, for the kinetic energy is replaced by

1
O \gg a,. (19)
Vg

Second, the Euclidean distance between two points (which
controls the interaction energy) is replaced by the non-
Euclidean length of the shortest path (geodesic) connecting

the two points. We denote by H,[g] the Hamiltonian in the
presence of the metric field g,,. Then the stress-tensor op-

erator is defined as the first variation in H,[g] under an in-
stantaneous variation in the metric tensor g M,,(r), ie.,

. _ 2 S,[g]
P/.LV(r) = \E5 ’uv(l') (20)

The first-order change in the Hamiltonian due to a change
08 4y in the metric tensor is given by

20
. . Vg(r)
fe) - gl [ a5,

().  (21)

Notice that the stress-tensor operator defined in this manner
is itself a functional of the metrics. This definition is com-
pletely analogous to the standard definition of the current-
density operator as the derivative of the Hamiltonian with

respect to a vector potential. An explicit expression for ]A’W
in Euclidean metrics is reported for completeness in Appen-
dix A (see also Refs 18, 19, 25, and 26). We note that the
definition of the quantum-mechanical stress tensor via the
variational derivative with respect to the metric tensor has
been also employed in Ref. 27.

We will now focus on the calculation of P,, —the cor-
rection to P,, of first order in w. In order to express
P,,1(r,1) and its divergence as functionals of the displace-
ment field we resort to Tokatly’s recent formulation of quan-
tum dynamics in the comoving reference frame.'®-2! The co-
moving frame is an accelerated reference frame which, at
each point and each time, moves with the velocity of the
volume element of the fluid at that point and that time, so
that the density is constant and equal to the ground-state
density, while the current density is zero. The time-
dependent transformation from the laboratory frame (coordi-
nates r) to the comoving frame (coordinates &) is defined by
the solution of the equation

or@)=v(r,, r(0)=§ (22)
i)

where v(r,7)= ner 18 the velocity field. In the linear re-
sponse regime the velocity is approximated as j(r,7)/ny(r),
where n(r) is the ground-state density. In this regime we can
write
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r(t)=&+u(g.), (23)

where u(&,1) is the (small) displacement of a fluid element
for its initial position & Expressing ds’=dr-dr in terms of
the new coordinates & and making use of Eq. (18) we see that
the metric tensor in the comoving frame is given by

&r o"r
Gl = 200 24)

From Eq. (23), to first order in the displacement field, we
immediately get

v = O+ 210, (25)
and
gt = 5M,, = 2u,,, (26)
where
1
Upy = E(r?,,uﬂ+ i) (27)

is the strain tensor. Also to first order in u the determinant of
the metric tensor is easily seen to be

g=1+2V -u (28)

so that, for example, g‘”zz 1-V-u. In view of these rela-
tions we will, in the rest of this paper, replace H,[g] by

H,[u], with the understanding that u completely determines
the metrics. We also notice that, by virtue of Eq. (26), we
have

oH[g]
g (r)

1 5H,[u]
2 8u,,,(r)’

(29)

The main reason for introducing the comoving reference
frame is that in this frame we can make a simple approxima-
tion, which enormously simplifies the task of linearizing the
stress tensor. This will be discussed in the next section. For
the time being we proceed in a formally exact manner. To
begin with, we observe that the general relation between the
stress tensor in the laboratory frame and that in the comoving
frame is

P (r,0) = (3,E,)(3,£0) P A Ex,0),1], (30)
where
~ 1 SH. Jul ~
P (r,t) =~ (W )I 1)), (31)
vg(r,1) u,,(r)

where |¢(1)) is the quantum state in the comoving frame.?

After expanding the stress tensor in the comoving frame
to first order in the displacement field

ﬁp.v(g’t) = P,u.v,()(g) + ﬁ,u.y,l(gvt) (32)

it is easy to see that in the laboratory frame we have
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P,uv,l = ﬁ,uv,l —u- VP,U.V,O - (a,u,ua)PaV,O - (&Vua)P,ua,O'
(33)

From this we get

aVP,LLV,l =&V[ﬁMV1 ( a) av,0 ((9 u )PMaO]
- a,,(ll ' VP;LV,O) (34)
and after some algebra
nlé,,u,VO + 0')VPMV’1 =npu - VU'),U,VO + ﬁv[ﬁ;u!,l + (V . u)PW’O

- (auua)PaV,O - zuaVP,ua,O]? (35)

where we have made use of the equilibrium condition (8)
and the definition in Eq. (27) of the strain tensor.

It is convenient at this point to introduce the first-order
stress force density

]_'

w1 =- (?V[ﬁ/.w,l + (V ! u)P,uV,O - (

ﬁ,u,ua)PaV,O - ZuaVP,u,a,O]
(36)
so that the equation of motion in Eq. (10) takes the form

.7:;%1(1‘, t)
ny(r)

Finally, it is possible to prove (see Appendix B) that the
first-order force density is exactly given by the expression

mﬁfuﬂ(r,t) +u-V4,V,= -4d,Vy(r,1). (37)

- (i )| | )> (38)

fp,,l(r9t) -

)
5I:Iu[u] . . . . A
where Su,m 1S the functional derivative of H, calculated

with respect to a virtual?® variation of the displacement field.
The vertical bar |, mandates that we keep only the first order
in u part of the bracketed expression.

With the help of this identity we see that the equation of
motion for the displacement field takes the form

mdu,(r,0) +u-Va,Vo=-

1~ SHJ[u] -~
(r)<¢//(t)| 5 #(r)lw(r» 1
— 9, Vi(r,0). (39)

The same result could have been derived almost immediately
by using the more sophisticated machinery of the generally
covariant Lagrangian formalism introduced in Ref. 20. In
fact, Eq. (39) is simply a linerized version of the equation of
motion for an infinitesimal fluid element, Eq. (39) of Ref. 20.

As a reality check, let us ask ourselves whether the sys-
tem can support excitations in which the displacement field
is uniform in space: u(r,7)=u(z). Clearly in this case the
strain vanishes and there is no change in metrics so
SH,[u]/ du is null. As a result, after setting the external field
V=0 we get the equation

mdu, (1) +u(t) - Va,Vy =0, (40)

which has the solution u,(t) = cos(wt+ ¢) if and only if the
potential is of the harmonic form Vo(r)=%mw2r2. This is just
a statement of the harmonic potential theorem>® according to
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which a many-body system in a harmonic potential performs
a rigid simple harmonic motion with frequency w imposed
by the curvature of the harmonic potential. We have now
shown that the harmonic potential is the only potential with
this property.

B. Elastic approximation

Equation (39) is formally exact, but it still contains the

time-dependent state |<Z(t)>, which of course is not known. In
spite of the simple behavior of the density (constant) and the
current density (null), the evolution of the many-body wave
function in the comoving frame is far from trivial. Neverthe-
less, a simple and physically appealing approximation sug-

gests itself. Namely, we assume that the wave function zz is
time independent (just as the density) and coincides with the
ground-state wave function of the laboratory frame (i)
evaluated at the coordinates & of the comoving frame

W& &) = (&1, . ). (41)

The physical idea behind this approximation is that the time
evolution of the wave function in the laboratory frame can be
approximated as a continuously evolving elastic deformation
of the ground-state wave function. Such a deformation af-
fects all the particles simultaneously and instantaneously.
The burden of describing the time evolution of the system is
entirely placed on the time-dependent geometry (i.e., the
time-dependent relation between & and r) while the wave
function itself remains independent of time.

What is lost in this approximation is the fact that in the
actual time evolution the system will undergo internal relax-
ation in order to optimize the correlations between the par-
ticles. In other words, the probability of finding the particles
in a certain configuration ry,...,ry at time ¢ is not strictly
determined by the probability that those particles were ini-
tially in the configuration &, ...,&y from which r(,...,ry
evolve according to Egs. (22) and (23). However, our ap-
proximation should always be valid at sufficiently high fre-
quency, i.e., when the evolution of the geometry is very fast
on the scale of the characteristic response times of the sys-
tem.

The equation of motion resulting from the elastic approxi-
mation is also strictly valid (and therefore, not an approxi-
mation at all) for any one-particle system because in this case
the wave function is completely determined by the displace-
ment field and there is no room for internal relaxation. Fi-
nally, our equation of motion is also strictly valid for nonin-
teracting Bose systems in the ground state (since these
systems behave like a single particle) and for noninteracting
Fermi systems consisting of at most two particles of opposite
spins in the same orbital (since these behave like noninter-
acting Bosons). In all other cases—including the apparently
simple case of a noninteracting many-fermion system—the
appropriateness of the elastic approximation must be as-
sessed a posteriori and may depend on the objective of the
calculation. In general, we can only say that the elastic ap-
proximation is expected to work better for collective (many-
particle) excitations than for single-particle excitations and
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better for strongly correlated many-body systems (which ex-
hibit bosonic behavior) than for weakly correlated systems.

It is important to appreciate the profound difference that
exists between the present approximation and another com-
mon approximation which also entails an instantaneous re-
sponse to a time-dependent field: the adiabatic approxima-
tion. In the adiabatic approximation one assumes that the
system remains in the instantaneous ground state of the

Hamiltonian H(r)—an assumption that is justified only if the
time evolution is slow on the scale of the characteristic re-
sponse time of the system. This is exactly the opposite of the
regime of validity of the present approximation. The geo-
metrically distorted wave function {Z is not at all close to the
instantaneous ground state of I:I(t). Rather, it is the ground
state of the “deformed Hamiltonian” Hy[u] which is obtained
from the initial-time Hamiltonian H, by a coordinate
transformation—indeed an elastic deformation.

As anticipated in the foregoing discussion the elastic ap-
proximation paves the way for a relatively simple calculation
of the complicated expression that appears on the right-hand
side of Eq. (39). Namely, thanks to the fact that =y, is
independent of the displacement field we can take the func-

tional derivative of Eq. (38) after taking the average and we
arrive at

1)
]—“M(r,t) =— % (42)
where
E,[u] = (ol H,[u] o). (43)
We further observe that
_ 1 5‘/0[“]
u-Vi,Vy(r) = o) —5MM(I') (44)
where
Vo(u) = f drVy[r +u(r)ny(r) (45)

is the external potential energy of the distorted ground state.
Putting all together we arrive at the elegant result
1 OE,[u]

mau,(r.f) =~ ny(r) du,,(r,1)

—aVi(e) (46)

where E,[u] is the second-order term in the expansion of the
total energy

E[u] = E,[u] + Vi[u] (47)
of the distorted ground state. Equivalently, E[u] can be ob-

tained as the expectation value of the original Hamiltonian
H, in the distorted ground state

N
golul(ry, ...ty = (&, ... &[T 74(&),  (48)
=1

where &,=r;—u(r;) and the last factor on the right-hand side
ensures normalization. This proves that E[u]—E[0] is a posi-
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tive definite quantity since E[0] is the ground-state energy of

H, while E[u] is the expectation value of H,, in a state that is
not the ground state.

C. Calculation of oF,[u]/ du—Kkinetic part

The evaluation of the distorted ground-state energy E,[u]
is, in principle, straightforward if the exact one-particle and
two-particle density matrices of the ground state are known.
In this section we focus on the construction of the kinetic
contribution, which, as we will show, leads to a local equa-
tion of motion, which involves only a finite number of de-
rivatives (up to the fourth) of the displacement field. For a
calculation of the kinetic contribution to the elastic energy
only the one-particle density matrix

p(r,r") = (ol ¥V ()| gy (49)

is needed. The kinetic energy of the distorted state is

1 [ - - ! !
Tu]=—— f dr\gg""d,d, g (r)g™ " (r") p(r,r") ]y,

(50)

which reduces to the kinetic energy of the ground state when
u=0. Expanding the above expression to second order in u
we arrive, after some laborious algebra (see Appendix C for
the derivation) to the following expression:

TZ[u] :Jdr{ZTuv,O[u,uauva_ i( uz) 07 U ):| + _(‘9;; vv)

X((?M VV [(ﬁM Va Va) ( o V/.L)((? uaa)]}
(51)

where

1
MVO - ( + ava,;)p(r’r,)h:r’ - Evznoép,v (52)
is the equilibrium stress tensor. Notice that 7»[u] is a local
functional of wu, i.e., it presents no coupling between dis-
placement fields at different positions. Taking the functional
derivative with respect to u(r) we arrive at the desired ex-
pression for the kinetic force density

_ T,[u]
ou

m

= aa[ZTV,u,Ouva + TVaO V] a d (l’l()O” V. ll)

1
+ E&V{Z(Vzno)um +(3,00)9,V -u

+ (ap,n())av V.u- zaﬂ[(aan())uva]}' (53)

D. Calculation of 6E,[u]/ du—potential part

To calculate the potential-energy functional W[u] we need
the two-particle density matrix of the ground state

pa(r,r") = (| TT (W (e )T )P ()| ). (54)

For a system of electrons interacting via Coulomb interaction
(charge —e) we have
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2 ’
e po(r,r’)
ul=—/1 dr| dr’ . 55
W] ZJ f [r+u(r)—r' —u(r’)| (55)

Expanding to second order in u we easily obtain

Wylu]=— %f drf dr'[u,(r) —u,(r')]

XK, (e, ), (r) = u,(r")], (56)

where

K, (r,x") = py(r,x')d,0, (57)

-]’
Finally, taking the functional derivative with respect to u(r)
we get
oW[u]
du,,(r)

= [ dr'K,,(r,r')u,(r) —u,(x)].  (58)

Thus, the inclusion of interactions transforms our equation of
motion into an integrodifferential equation. Notice, however,
that the interaction contribution vanishes if u(r) is constant
in space, as expected from the translational invariance of the
interaction.

E. Equation of motion for one-dimensional systems

The formulas presented in the preceding subsections sim-
plify dramatically in one-dimensional systems, where the
displacement field has only one component, u(x), the strain
tensor reduces to the derivative of the displacement field
u'(x), and the equilibrium kinetic stress tensor reduces to a
scalar

n

1 n
T()(.X) = &x&x;p(x,x')|x:x, -2 . (59)
m 4

Then the combination on the last line of Eq. (53) vanishes
and we are left with the simpler expression

M Grny - gy, (60)

ou u 4m

where the primes denote derivatives with respect to x. The
complete equation of motion for one-dimensional systems is
thus

1
mngdu=—nquVy+ (3Tou')' - E(nou")”

+fdx’K(x,x')[u(x)—u(x’)]—nOV{, (61)

where K(x,x') is given by the one-dimensional version of
Eq. (57). We will make use of this form of the equation of
motion in the model applications presented below.

III. CURRENT-DENSITY-FUNCTIONAL APPROACH

Our discussion thus far has not relied on time-dependent
current-density-functional theory, except on a very abstract
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level, i.e., as a basis for the statement that the stress tensor
must be a functional of the current density. The formulas
presented in the last two sections relied on the knowledge of
the exact density matrices p and p, of the many-body
ground-state—two quantities that are amenable to treatment
by powerful numerical techniques (e.g., the quantum Monte
Carlo method) which have little in common with DFT. Be-
fore proceeding, we wish to clarify how the time-dependent
CDFT can help us in more concrete ways when the exact p
and p, are not known, which is by far the most common
case.

One of the main ideas of TDCDFT is that the current and
density evolutions of the interacting many-body system can
be simulated in a noninteracting many-body system subject
to an effective time-dependent vector potential which in-
cludes the Hartree electrostatic potential and dynamical
exchange-correlation (xc) effects. This noninteracting system
is known as the “Kohn-Sham (KS) reference system” and its
ground-state density coincides with the exact ground-state
density of the interacting system, i.e., ny(r). The potential
that produces this exact ground-state density in the Kohn-
Sham reference system is known as the static Kohn-Sham
potential and is usually written as

Vs,o(l‘) =Vy(r) + VH,O(I') + ch,o(l'), (62)

where Vy and V., are, respectively, the Hartree potential
and the xc potential of the ground state. These static poten-
tials should not to be confused with the additional dynamical
Hartree and xc potentials, which appear when the system is
not in equilibrium.

The idea is now to apply our continuum mechanics for-
mulation directly to the Kohn-Sham reference system. There
is a small technical problem in doing this, namely the time-
dependent xc vector potential A, (r,7) that acts on the Kohn-
Sham system has in general a transverse component, which
cannot be represented as the gradient of a scalar potential.
Indeed, a complete representation of A requires that we in-
troduce both an electric field E,. and a magnetic field B,..
The inclusion of the xc magnetic field does not create any
difficulties in principle (see Ref. 20) and leads to the appear-
ance of a Lorentz-force term in the equation of motion for
the current. But this Lorentz-force term can be safely disre-
garded in the linear response approximation because it has
the form j X B which is of second order in the deviation from
equilibrium. Thus we can take into account dynamical xc
effects simply by adding the force —¢E,, to the driving force
—-nyVV, on the right-hand side of Eq. (15). All this consid-
ered, our equation of motion takes the form

mapu(r,) + - V)V,

_ L 5T52[u]

T ny du(r) = VIVi(r,0) + Vi i (r,0)] = By, (r,0),

(63)

where Vy, is the first-order term in the expansion of the
time-dependent Hartree potential and E,. ; is the first-order
term in the expansion of E,. in powers of u(r). The nonin-
teracting kinetic force density —d&T,[u]/ du(r) is given by
Eq. (53) in which, however, the equilibrium kinetic stress
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tensor T, is replaced by the corresponding quantity for the
Kohn-Sham reference system, i.e.,

1 ! ! & ! 1
TLV,O = %(ﬁﬂﬁy + &V(y,u,)g ‘zb((r) lﬁ((l‘ )|r=r’ - EvznOg;w’
(64)

where i,(r) are Kohn-Sham orbitals for the ground state and
the sum over € runs over the occupied orbitals.

Assuming that the Kohn-Sham ground state has been ob-
tained by one of the available approximations for V;, the
remaining problem is to find a suitable approximate expres-
sion for E,.;. The “natural” approximation, in the present
context, would be the high-frequency approximation, which
expresses E,. as the functional derivative of the exchange-
correlation energy functional with respect to u. In practice,
since the latter is not known, one has to rely on more or less
uncontrolled approximations, such as the high-frequency
limit of the local density approximation proposed in Refs. 19
and 31-33—see Eq. (117) of Ref. 19 (a general discussion of
these approximations can be found in Ref. 34). This approxi-
mation is local both in space and time and is obtained by
applying an instantaneous geometric deformation to the ho-
mogeneous electron gas. In the second respect it is perfectly
consistent with our elastic approximation for the noninteract-
ing kinetic force but we must keep in mind that the latter is
fully nonlocal.

Unfortunately, the local deformation approximation for
the xc potential suffers, like all electron-gas based approxi-
mations, from a serious defect: it fails to cancel the unphysi-
cal self-interaction that is contained in the Hartree term. This
makes it unsuitable for the treatment of strongly correlated
system, where the spurious self-interaction energy can be
very large. More accurate approximations® do not suffer
from this defect but are more difficult to implement. Further-
more, such approximations would do little (apart from fixing
the self-interaction problem) to capture the physics of
strongly correlated electrons. Alternatively, one could use
functionals explicitly designed for electronic systems in the
strong coupling limit, such as the ones developed by Seidl et
al.* and, more recently by Seidl et al.’’

IV. CALCULATION OF EXCITATION ENERGIES

A. Eigenvalue problem

An immediate application of our equation of motion is the
calculation of excitation energies.>* To this end we turn off
the external potential V| and consider the homogeneous
equation

5E2[u]

ou(r,r)’ (63)

mno(r)ﬁtzu(r,t) =-

Fourier transforming with respect to time and carrying out
the indicated expansion of the energy to second order in u
we get

PHYSICAL REVIEW B 81, 195106 (2010)

0
mano(r)u,(r, ) = J ar'— o Elu]

O | g

u=0
(66)

Although this expression is not the most useful in practice, it
does bring forth some important features of the problem.
First, because the kernel of the integral equation is a sym-
metric second functional derivative, we are in the presence of
an essentially Hermitian eigenvalue problem. More precisely,
the problem is Hermitian with respect to a scalar product
defined as

@@Efm%mm%m, ©7)

where f and g are arbitrary functions. This can be seen by
rewriting Eq. (66) as an equation for = Vny(r)u(r) and not-
ing that this equation has the form of a standard eigenvalue
problem with a symmetric kernel

f .1 S5°E[u] 1
dr' — ; ,
V’mno(r) 5“;1,(1') 614,,(1' ) u=0 \s’mno(r’)

= wzﬁﬂ(r, w). (68)

i,(r’, )

This means that all the eigenvalues will be real and eigen-
functions @ corresponding to different eigenvalues are or-
thogonal with respect to the ordinary scalar product. It fol-
lows that the original eigenfunctions u are orthogonal with
respect to the scalar product defined by Eq. (67). Second, the
kernel of the integral equation is positive definite, because
E[u] has an absolute minimum at u=0, which corresponds to
the ground-state energy. For this reason, it is guaranteed that
all the eigenvalues are positive. The square roots of these
eigenvalues are the approximate excitation energies of the
system, starting from the ground state. The eigenfunctions
also have a simple interpretation as approximate matrix ele-
ments of the current-density operator between the ground
state and the excited state under consideration, divided by
the ground-state density. We will show this more clearly in
the next section.

B. Derivation from linear response theory

Additional insight into the significance of the eigenvalue
problem for the excitation energies is obtained by deriving
the equation of motion directly from the linear response of
the current density to an external vector potential in the high-
frequency regime. To this end we write

jﬂ(r,w):fdr’XW(r,r',a))A,,’l(r',w), (69)

where y,,(r,r’, o) is the current-current response function,
and notice that, at high frequency, this function has the well-
known expansion

1o(E) s - r)8,,+ Murx) 70

r,r',w)=
X,MV( > ) m2w2

m
where the first term (diamagnetic term) is frequency indepen-
dent and

195106-8



CONTINUUM MECHANICS FOR QUANTUM MANY-BODY...

w08 = = (Yol Ho. (0 11Ny (TD)
is the first spectral moment of the current-current response
function. ([A B] denotes the commutator of two operators A

and B, and Yy is the undeformed ground-state wave func-

tion.) Now, replacing j(r, w)=—iwny(r)u(r,w) and A,(r, )
_ VVi(r,w)

o » and solving for VV; to leading order in 1/ * we
obtain

1
mwu -
ng

3,V = dr' M, (r,r")u,(r"). (72)
This is equivalent to our equation of motion in Eq. (46) if
and only if

SE[u]

M e et N
51";;,(1.) 5141/(1., u=0

My(rvr,) = (73)

To show that this is indeed the case we observe that the
deformed ground-state wave function can be expanded as

golul= o+ o+ g + -+, (74)

where ¢y is the undeformed ground-state wave function and
1//(1) and zﬂ(z) are corrections of first and second order in u,
respectively. The various corrections are not mutually inde-
pendent. If iy[u] is normalized to a constant independent of
u, then we must have

(ol vy + U1y = = (b gy (75)

Taking this into account it is easy to verify that the second-
order correction to the energy is

Ex[ul = (| Hy — Eol ), (76)

where E is the ground-state energy. Finally, we observe that
the first-order correction to the ground-state wave function is
given by

| Bl)>=—imJ drj(r) - u(r)| gh), (77)

where we have used the fact that the momentum-density op-

erator mj (r) is the generator of a local translation of all the
particles in an infinitesimal volume located at r. Thus, the
operator on the right-hand side of Eq. (77) performs different
translations by vectors u(r) at different points in space, i.e.,
precisely deforms the ground state according to the displace-
ment field u(r). Substituting the above expression for |¢{")
into Eq. (76) for E,[u] one can easily verify that

E[u]= %f drf dr'u,(r)M ,,(r,r")u,(r") (78)

with M, (r,r’) given by Eq. (71). This establishes the va-
lidity of Eq. (73).

C. Eigenfunctions and sum rule

The spectral representation of the kernel of our equation
of motion gives additional insight into the nature of our
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approximation and shows clearly where things can go wrong.
Namely, we can write

M,u.v(r’r,) = mZE wnO{[j,u]On(r)l—J.u]nO(r’)
+[/Jon (e do ()} (79)

where w,, are the exact excitation energies of the system
from the ground-state (0) to the nth excited state, and

[ uJuo(r) = (n|]AM(r)|0) are the matrix elements of the current-
density operator between the corresponding states. An exact
linear equation for the excitations would have to give *w,
as excitation energies and ny'(r)[j Jon(T) [—nol(r)(] )no(r)]
as the corresponding elgenfunctlons

In general, this will not be the case. However, for the
special case of a one-particle system, in the absence of a
magnetic field, we can show rather easily that [j,],(r)
=~[j uJuo(r) and furthermore that nol(r)[j TJon(r) is mdeed an
elgenfunctlon of the operator nj (r)M Jr,r') with eigen-
value mw?,. This follows from the orthonormahty relation

f Lwdon ()L Jko(r) = S (80)
V@000

ny(r)

which is valid for one-particle systems (in the absence of a
magnetic field) and is proved in Appendix D. Then the ei-
genvalues of Eq. (72) with V=0 are w=*w,, as they
should be. This result is perfectly consistent with our previ-
ous observation that the “elastic approximation” is not an
approximation at all when it comes to one-electron systems
due to the lack of retardation effects in such systems.

In general, in a many-particle system the matrix elements
of the current-density operator between the ground state and
different excited states are not necessarily orthogonal. In-
deed, we will see that two completely different excited states
can produce the same eigenfunction for the displacement
field, up to a proportionality constant. The reason why this
can happen is that the exact equation of motion for the dis-
placement field of a many-body system is not an eigenvalue
problem (even though it is linear) due to the frequency de-
pendence of the kernel. As a result, the normalization of the
solutions becomes relevant: two “eigenfunctions” that differ
by a mere proportionality constant can result in different ex-
citation energies when the kernel of the linear equation is
itself energy dependent. In such cases, the elastic approxima-
tion will fail to resolve the different excitation energies, re-
placing them by a single excitation energy at an “average”
value.

In spite of this shortcoming, an exact sum rule can be
established, which relates the exact eigenvalues w, of the
elastic eigenvalue problem to the exact excitation energies
®,o.- The sum rule reads

=2 frwngs (81)

where the “oscillator strengths”
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2

drjo, (1) - uy(r)
= (82)

Wy0

and where u,(r) is the solution of the elastic eigenvalue
problem normalized with respect to the scalar product in Eq.
(67), w,, is its eigenvalue, and the sum runs over all the exact
eigenstates. Further, the oscillator strengths satisfy the sum
rule

2h=1 (83)

for all N. The proof of these results is presented in Appendix
E.

From this vantage point we see that the elastic approxi-
mation is the extension of the well-known collective
approximation® of the homogeneous electron gas to inho-
mogeneous systems. Each eigenvalue w, of the elastic equa-
tion of motion is a weighted average of exact excitation en-
ergies with a weight controlled by the overlap of the exact
current matrix element with the eigenmode wu,(r). Since
u, (r) form an orthogonal basis in the space of displacements,
we can say that w, represents the average energy of exact
excitations in the “direction” N. Thus, the full excitation
spectrum is replaced by a set of spectral lines, one for each
orthogonal direction in displacement space, and each one
carrying the entire and exact spectral weight for that particu-
lar direction.

V. MODEL APPLICATIONS

For orientation we now examine the application of our
theory to a few simple models.

A. Homogeneous electron gas

In a homogeneous electron gas the ground-state density
no=n is independent of position. The equilibrium kinetic
stress tensor has a constant value
2

nt(n)

T 0= (84)

u e
where #(n) is the kinetic energy per particle. The two particle
density matrix p,(r,r’) is a function of |[r—r’|. In such a
homogeneous system the displacement eigenfunctions are
simply plane waves

u(r,?) = li(q, w)e' ™" (85)

characterized by a wave vector q. Of these there are two
kinds: longitudinal, in which @ is parallel to q, and trans-
verse, in which @ is perpendicular to . The expression (53)
for the kinetic force density reduces to
2
_onlul__ %nt(n)[Zq(q ) + ]+ q(q- ).
ou 3 4m

(86)
The force density from potential energy, Eq. (58), is given by
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5W2[ll]
ou

i

= [Kp,v(o) - K,u,]/(q)]ﬁv’ (87)

where

K,(q) = f(z )3pz(q q')q,90(q"), (88)

where v(q)=4me?/q* is the Fourier transform of the Cou-
lomb potential in three dimensions and p,(q)—the Fourier
transform of p,(r—r’)—is related to the static structure fac-
tor S(g) in the following manner:

p2(q) =n[S(q) —1]. (89)

Thus, we get

_ Walu] _

su nf dq'[S(q-q") - S(q")]v(g")q'[q" - a(q)].

(90)

Finally, in order to take into account the neutralizing back-
ground of positive charge (required for the stability of the
electron gas), we add the external potential

Volr) =~ w)(r- )% (91)

where w,z,=47'rnez/m is the square of the plasmon frequency
and ( is the unit vector in the direction of q. Notice that this
potential is assumed to vary only in the direction of ¢ be-
cause it is only in this direction that the displacement gener-
ates boundary charges: the system remains perfectly homo-
geneous in the direction perpendicular to q.*° The
corresponding force in the equation of motion in Eq. (15) is

u-Vi,Vo=mw (- u)g,. (92)

Putting everything together, the equation of motion takes the
form

2 2
ﬁzgt(n)[Zq(q o) +q* u]+—q(q ) +maw(§ - 0)§

d !
%J (z:)s[s(q‘q')—S<Q’>]<i’[<i' a(q)].
(93)

This can be further decoupled into longitudinal and trans-
verse components denoted by #; and uy, respectively. The
corresponding eigenvalues are

wi(q) = w+2z<n>m 4 4 —’lj( 2(G-4")?

X[S(q-q")-S(q")] (94)

and
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FIG. 1. (a) Longitudinal and (b) transverse modes for a homo-
geneous electron gas at r,=1,3,5. Wave vector ¢ is in units of kp
and frequency is in units of 2Ey. The curves labeled w,(g) and
w_(g) are the boundaries of the electron-hole continuum (Ref. 38).
Single-particle excitations exist for w_(¢q)<w<w,(g) whereas
multiparticle excitations are distributed all over the plane. The elas-
tic approximation replaces the exact spectrum by the two branches
wr(g) and wz(g), which carry the entire spectral weight. Notice that
the r, dependence is barely discernible on a large ¢ scale but be-
comes clearly visible at smaller ¢ as shown in the insets.

dq
2m

34 % d")[S(a-q") - S(q")].

(95)

2 N, ,
w(q) = gl(n)z + Eﬁf

Of course, this is exactly what one would have obtained by
assuming that the spectrum of the current-current response
function consist of a single S-function peak at w; or wy
and requiring satisfaction of the first moment sum rule (see
Ref. 38, Eq. 3.191, and Ref. 41).

In Fig. 1 we plot the excitation spectrum of the homoge-
neous electron gas calculated from Egs. (94) and (95). We
have used the static structure factor calculated in Ref. 42 by
the quantum Monte Carlo method and the kinetic energy has
been computed from the parametrized correlation energy of
Appendix B of Ref. 42, using the virial theorem. In the lon-
gitudinal channel, the exact spectrum is dominated at small g
by the plasmon and at large g by free particle excitations
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(energy ¢*/2m). There are also also electron-hole pair exci-
tations at lower ¢ and w as well as multiple electron-hole
pair excitations all over the plane. The elastic approximation
replaces this complex spectrum by a single branch of longi-
tudinal excitations which has the correct spectral moment. In
particular, we get the correct dispersion of the plasmon at
small g and the correct free particle behavior at large ¢g. In
the transverse channel the plasmon and the high-g free par-
ticle excitations are absent. The exact transverse spectrum
consists primarily of low-energy electron-hole pair excita-
tions. The current vector, k+q/2, where k and k+q are the
momenta of the hole and the electron, respectively, is essen-
tially perpendicular to q when k and k+q both lie near the
Fermi surface. On the other hand, high-energy excitations,
with energy ¢?/2m are essentially longitudinal because the
current vector is essentially parallel to q when q is much
larger than the Fermi momentum. This is consistent with the
fact that the frequency of our transverse collective mode
wr(q) grows linearly with ¢ at large g.

B. Linear harmonic oscillator and hydrogen atom

In order to demonstrate the exactness of the formulation
for one-electron systems let us now consider the canonical
examples of the one-dimensional harmonic oscillator and the
hydrogen atom. For a harmonic oscillator of natural fre-
quency w,, external pgtf:ntial Vo(x)=max?/2, and equilib-

—X’

rium density n(x)="“=;, where £ = (mw,)™'""?, the equation

of motion in Eq. (61) reduces to

1 2 2

" m 2 " , W@y
—u —xu"+(x*=2)u" +3xu" - ———u=0. (96)
4 wy

Solving the eigenvalue problem with the boundary condition
of ny*(x)u(x) —0 as |x|— o, we obtain the exact excitation
spectra w,=*n{), where n=1,2,... The corresponding
eigenfunctions are

n—1 ()C) } (97)

which are mutually orthogonal with respect to the scalar
product in Eq. (67). These are indeed proportional to the
matrix elements of the current density operator between the
ground state and the nth excited state.

A similar calculation can be done for hydrogenlike atoms
of atomic number Z. Focusing for simplicity on excitations
of spherical symmetry, we introduce a radial displacement
field u,(r) which depends only on the radial coordinate r.
Then u, satisfies the equation

1w 1 m 2 1 ” 3 ' 2 w2
Zur— 1—; u, + 1—;—; u,+;u,— ;+? u,

=0, (98)

1, (x) %

where the primes now denote derivatives with respect to r.
Solving the eigenvalue problem with boundary condition
n(l)/z(r)u,(r)—>0 for r— oo yields the correct excitation ener-
gies w,=(Z%/2)(1-1/n*) (n=1,2,..). The corresponding
eigenfunctions are given by Laguerre polynomials
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,(r) = Lﬁ_2<%’>. (99)

C. Two-electron systems

As a final example let us consider the case of two elec-
trons repelling each other with the “soft” Coulomb potential
2

m in a one-dimensional parabolic trap of natural fre-
VX =x;

quency wy (the cutoff a >0 serves to eliminate the pathologi-
cal behavior of the interaction at x;=x,). This is a model that
can be solved numerically thanks to the separation of center
of mass and relative variable, and analytically in the limit of

strong correlation. The Hamiltonian is
2 2 2

A P m
HO=—+mw(2)X2+p—+—w(2)x2+
4m m 4

(100)

9
\s"x2 +a?

where X= X';xz and P=p,+p, are, respectively, the coordi-

nate and the momentum of the center of mass, and x=x;

—Xx, and p:p%‘”2 are the coordinate and the momentum in the
relative channel. Notice that for a fixed strength e’ of the
interaction we can go from the weakly correlated regime to
the strongly correlated regime by varying the value of
wy: wy— % corresponds to the noninteracting limit, and
wo— 0 to the strongly correlated limit.

The ground-state wave function is

Wo(x1,x2) = h(X) d(x),

where ,(X) and ¢y(x) are, respectively, the ground-state
wave functions of the center of mass and of the relative
Hamiltonian. The general excited state is

qlnm(xlﬁ-XZ) = wn(X) ¢m(x) s

where #,(X) is the wave function of the nth excited state of
the center of mass hamiltonian and ¢,,(x) is the wave func-
tion of the mth excited state of the relative Hamiltonian.
The ground state of the system is a spin singlet (S=0) and
for this reason in the following we consider only singlet
states, which are connected to the ground state by the
current-density operator. The relative wave function for such
states is symmetric: ¢,,(—x)=¢,,(x). This wave function has
2m nodes, of which m with x>0 and m (symmetrically
placed) with x<<0. The center of mass wave function

(101)

(102)

P(X) =Hn(€£>e‘xz/”5m (103)

cm
can be either symmetric or antisymmetric, depending on the
parity of n, and has n nodes. Here {.,=Vk/2mw,. The
ground state has n=0,m=0 and all the other states are char-
acterized by positive values of the integers n and m.
In the non interacting limit (w,— % or > — 0) the relative
wave function is

B(x) =H2m<i>e"‘2’”5, (104)

€o

where €,=V2h/mw,. The ground-state density is a Gaussian
centered at the origin. The excitation energies, expressed in
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units of wy, are sums of the excitation energies of two iden-
tical harmonic oscillators

nm

lim =n+2m

w)—% (Oh)

(105)

with n and m as non-negative integers. The degeneracy of the
excited states is the number of integers less or equal n+2m
with the same parity as n+2m, i.e.,

n+2m] (106)

Dnm=1+[
2

where [y] denotes the integer part of y. The displacement

field associated with the (n,m) excitation is

unm(x) o< Hn+2m—1 (X/)\O) s (] 07)

where2 Z\O:\/€fm+(€0/2)2:\s'/ﬁ/mwo. The
(_1)n+ m—

parity s
and the number of nodes in n+2m—1.

The situation is quite different in the strongly correlated
limit (wy—0 or e?— ). The relative Hamiltonian reduces
to a harmonic oscillator of frequency wov’g with equilib-
rium distance )co=(262/mw(2))”3 (we assume a<<xp).
The ground-state wave function for the relative motion is a
symmetric_linear combination of two Gaussians of width
€.=(2h/\Bmwy)""*> centered at x;—-x,=*x, The corre-
sponding ground-state density ny(x) consists of two
Gaussian_ peaks of the width )\m=\r€§m+(€m/2)2=[ﬁ(l
+13)/2\3mw,]"* centered at x=*+x,/2. The excitation
spectrum has the form

lim Eum =n+ m\r’g
wy—0 Wo

(108)

and the degeneracy is completely removed. The displace-
ment field is analytically found to be

X —Xxo/2

X +x0/2)
b

(109)

unm(x) * Hn+m—l( ) 0()6) + (_ 1)mHn+m—l(

s}

X O(-x).

The parity is (=1)""! and the number of nodes is 2(n+m
—1)+mod(n—-1,2), where mod(n—1,2)=n-1(mod 2).

The evolution of the lowest-lying energy levels with
given value of the pair n,m as a function of w, is shown by
the solid lines in Fig. 2. Some of the displacement fields of
the low-lying excitations in the strongly correlated regime
[Eq. (109)] are shown in Fig. 3.

From these figures we see that the displacement field of
the (1,0) excitation, which corresponds to a rigid translation
of the center of mass, is uniform in space, while the displace-
ment field of the (0,1) excitation, which corresponds to the
classical breathing mode, changes sign around the origin.
The (1,0) and (0,1) excitations correspond to the classical
phonon modes of a system of two localized particles. The
remaining excitations are quantum mechanical in character,
as can be surmised from the fact that their displacement
fields (in the strongly correlated regime) have significant
variation over the regions where the density has peaks, i.e.,
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FIG. 2. (Color online) Evolution of the excitation energies for
two electrons in a one-dimensional harmonic trap. Solid lines de-
note exact excitation energies, labeled by (n,m) as explained in the
text. Solid dots indicate the calculated eigenvalues of the QCM
equation of motion. Crosses on the right denote the strong-
correlation limit of the eigenvalues, given by Eq. (113).

the places where the particles would be classically localized.
These modes describe the dynamics of the wave function of
the localized electrons.

Looking at the figures we observe that, in the strongly
correlated regime, there are groups of excited states, e.g.,
{(0,2), (2,005 {(3,0), (1,2)}; {(2,1), (0,3)}; {(4,0), (0,2), and
(0,4)}, such that all the excited states within one group pro-
duce the same displacement field, up to a normalization con-
stant. In general, states with a given value of n+m and the
same parity of m have the same displacement field but dif-
ferent energies. Clearly, this is a feature of the exact solution
that cannot be reproduced by any linear eigenvalue problem
with a frequency-independent kernel.

The phenomenon of different excited states producing the
same displacement field occurs also in the noninteracting
limit: all the states with the same value of n+2m [e.g., (0,1)
and (2,0)] have the same displacement field. But, in this case,
the states with the same displacement field also have the
same energy: therefore the noninteracting excitation energies
can be accurately reproduced by a linear eigenvalue problem.

Let us now see what our elastic equation of motion in Eq.
(61) predicts for this system. The kinetic part of the equilib-
rium stress tensor 7,(x) works out to be

=2 dy{[%(x—ywo(%) b3
>
()] —Za,%[qsa(x—y)%(%)]},

(110)

where ¢, and ¢, are the ground-state wave function in the
center of mass and relative channel, respectively. The inter-

action kernel K(x,x') is given by
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FIG. 3. (Color online) Top panel: the displacement field u,,,(x)
for (n,m)=(0,1), (0,2), and (0,3) in the strong correlation limit.
Bottom panel: the same for (n,m)=(1,1), (1,2), and (2,1). The thin
solid lines represent the density profile. The large value of the dis-
placement field for x ~ 0 does not have a physical significance since
the density is exponentially small in that region.

—2(x— "2 2 ’

(111)

We now have all the input that is necessary to set up and
solve the fourth-order integrodifferential Eq. (61).

In the limit of weak correlation (wy,— ) the eigenvalues
of the integrodifferential equation coincide with the exact
(degenerate) excitation energies. This is understandable,
since in this limit the two electrons are decoupled and the
excitation spectrum of the two-electron system coincides
with that of a single electron starting from its own ground
state. This spectrum, as we have seen, is exactly reproduced
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by our equation of motion. Unfortunately, this nice feature of
the present model cannot be extrapolated to general systems.
If, for example, the system contains more than two electrons
then even in the noninteracting limit a generic excitation will
entail the transition of a single electron from an occupied
orbital that is not the ground-state orbital to an unoccupied
one. Such an excitation will not be described exactly by our
method.

In the limit of strong correlation our integrodifferential
equation can be solved analytically, as shown in Appendix F.
The eigenfunctions can be classified as even (+) or odd (-)
and are given by

- Xo/z
)\oo

X+ x0/2

)0(—)6),
(112)

Uy +(x) Hk(x )9()6) * (- 1)ka(

0

where k is a non-negative integer. The number of nodes is 2k
for even eigenfunctions, 2k+1 for odd eigenfunctions. The
corresponding eigenvalues are given by

E .
lim =55 = [2 4 33k + 6k(k = 1)(2 = \3)

wy—0 Wo

F (- D2 -3 (113)
Notice that, within each symmetry sector (even or odd), the
eigenvalues increase monotonically with increasing k.

In Table I, fourth and fifth column, we present a detailed
comparison between the exact excitation energies and the
eigenvalues of our equation of motion in the strong correla-
tion limit. For the sake of clarity, we list the excitations that
produce even displacement fields and those that produce odd
displacement fields separately.

The elastic equation of motion can also be solved numeri-
cally and the results are in very good agreement with the
analytical solution. This, and the fact that the sum rule in Eq.
(81) is satisfied with good accuracy, builds our confidence in
the numerical solution.

In Fig. 2 we present the numerical results for some of the
lowest-lying excitations as a function of w,. We can imme-
diately see that the “nondegenerate” excitations, by which
we mean the excitations (1,0), (0,1), and (1,1), which are
uniquely associated to a given displacement field, are rather
well reproduced by our calculation for all values of w,. On
the other hand, the “degenerate excitations,” which yield the
same displacement field but have different energies, are re-
placed by a single excitation of an average energy, in such a
way that the total spectral strength of the group is preserved.
Two examples of this phenomenon are evident in Fig. 2: the
(2,0) and (0,2) excitations, which in the strong correlation
limit (wy— 0) have energies 2w, and 3.464w,, respectively,
are replaced by a single excitation—the fourth one in Fig.
2—which tends to the average energy 2.632w,. Similarly, the
(3,0) and (1,2) excitations, which, in the wy— 0 limit tend to
3wy and 4.464w,, respectively, are replaced by a single
excitation—the fifth one in Fig. 2—which tends to the aver-
age energy 3.942w,. The pattern recurs for more complex
multiplets of excitations, involving three or more states with
the same displacement field and different energies.
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FIG. 4. (Color online) Evolution of the displacement fields of
excitations (1,1) and (3,0) (even), and (2,0) and (2,1) (odd) as a
function of correlation strength sz(_)l , as shown in the top left
panel. Notice the variation in the number of nodes as y increases
from the weakly correlated with the strongly correlated limit.

We notice that the displacement field associated with, say,
the (n,m) excited state has a number of nodes that generally
grows from n+2m—1 in the weak coupling limit to 2(n+m
—1) (odd n) or 2(n+m—1)+1 (even n) in the strong coupling
limit. This effect is particularly pronounced for states of
small m and is absent in the n=0 states. Figure 4 shows the
evolution of the displacement field for the even excitations
(1,1) and (3,0) and for the odd excitations (2,0) and (2,1). We
see that in the nondegenerate (1,1) state, the number of nodes
stays constant and equal to 2 as one goes from the weakly
correlated with the strongly correlated regime. In the (3,0)
state the number of nodes grows from 2 to 4 nodes so that
the displacement field of this state becomes proportional, in
the strong-correlation limit, to that of the much higher in
energy (0,3) state. The same behavior is observed in state
(2,0), for which the number of nodes grows from 1 to 3, and
in state (2,1), for which it grows from 3 to 5. By this mecha-
nism, states of very different energy end up sharing the same
displacement field (up to a proportionality constant) in the
strong correlation limit.

Our discussion has been limited to singlet states (symmet-
ric wave function in the relative channel). It would be easy to
extend the calculation to include triplet states. To this end,
we simply replace the density, kinetic-energy density, and
pair-correlation function of the ground state (a singlet) by the
same quantities calculated from the ground state in the triplet
(S=1) sector of the Hilbert space. The relative wave func-
tions of these states are antisymmetric. The correct symmetry
of the wave function is automatically taken into account
through the ground-state properties and does not further ap-
pear in the elastic equation of motion.

VI. DISCUSSION AND SUMMARY

The elastic approximation is, in a very precise sense, the
extension of the well-known collective approximation®*! of
the homogeneous electron gas to nonhomogeneous elec-
tronic systems. In the case of two electrons interacting by
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TABLE I. Exact excitation energies E,,, of the two-electron model with Hamiltonian specified in Eq.
(100) in the noninteracting limit (Egm, second column) and in the strongly correlated limit (E;, . fourth
column). The eigenvalues of the QCM equations of motion (E:er_l’i) in the strongly correlated regime are
listed in the fifth column. The top half of the table lists excitations with even displacement fields and the
bottom half lists excitations with odd displacement fields. The third and the last columns on the right list the

number of nodes in the displacement field in the noninteracting limit (N°) and in the strongly correlated limit

PHYSICAL REVIEW B 81, 195106 (2010)

(N*). Horizontal lines separate groups of states with the same displacement field.

(}’l ’m) Eﬁm NO E;Cm E;to+m—l,+ APO
Even modes

(1,0) 1.0 0 1.0 1.0 0
(1,1) 3.0 2 2.732 2.732 2
(3,0) 3.0 2 3.0 3.942 4
(1,2) 5.0 4.464 4
(3,1) 5.0 4 4732 5.220 6
(1,3) 7.0 6 6.196 6
(5,0) 5.0 4 5.0 6.486

(3,2) 7.0 6 6.464

(1,4) 9.0 8 7.928

(5,1) 7.0 6 6.732 7.755 10
(3,3) 9.0 8 8.196 10
(1,5) 7.0 6 9.660 10
(l’l ’m) Egm NO E:m E::+m—l,— A]OO

Odd modes

(0,1) 2.0 1 1.732 1.732 1
(2,0) 2.0 2.0 2.632 3
(0,2) 4.0 3 3.464 3
(2,1) 4.0 3 3.732 3.960 5
(0,3) 6.0 5 5.196 5
(4,0) 4.0 3 4.0 5.217 7
(2,2) 6.0 5 5.464 7
(0,4) 8.0 6.928 7
4,1) 6.0 5 5.732 6.487 9
(2,3) 8.0 7.196 9
(0,5) 10.0 9 8.660 9

Coulomb potential in a harmonic trap, we have seen that the
elastic approximation replaces groups of excitations charac-
terized by the same displacement field by a single excitation
that carries the oscillator strength of the whole group. In
more complex systems, we do not expect to be able to iden-
tify small groups of excitations that share the same displace-
ment field. All that can be said is that the displacements
associated with different excitations will not be linearly in-
dependent. Each eigenfunction of the elastic equation of mo-
tion will overlap with many different excitations. However,
the integrated spectral strength of the elastic eigenmodes will
still add up to the correct value. For this reason, our approxi-

mation should be useful in dealing with collective effects
which depend on the integrated strength of the excitation
spectrum, such as the dipolar fluctuations that are responsible
for van der Waals attraction.*>** Other possible applications
include possible nonlocal refinements of the plasmon pole
approximation in the so-called GW theory* and studying the
dynamics of strongly correlated systems, which are domi-
nated by a collective response. As a byproduct we got an
explicit analytic representation of the exact xc kernel in the
high-frequency (antiadiabatic) limit.#® This kernel should
help us to study an importance of the space and time nonlo-
calities in the KS formulation of TD(C)DFT. It would be
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particularly interesting to try and interpolate between the
adiabatic and antiadiabatic extremes to construct a reason-
able frequency-dependent functional.

The elastic equation of motion derived in this paper relied
on the knowledge of the exact density matrices p'") and p®
of the ground state. In many cases, these ground-state prop-
erties can be extracted from quantum Monte Carlo calcula-
tions. When this cannot be done, one can still resort to den-
sity functional theory, i.e., apply the QCM formulation
directly to the Kohn-Sham system, in which case we do not
need the exact ground-state density matrices but only the
ground-state KS orbitals and a reasonable approximation for
the exchange-correlation field. While the standard KS
method treats the noninteracting kinetic stress tensor exactly,
our method should be computationally more agile, for large
systems, since it does not involve time-dependent orbitals
and/or the inversion of large linear response matrices. Admit-
tedly, the approximation of the kinetic energy is a severe one,
which is ultimately responsible for the absence of many par-
ticular excitations which would be captured in the conven-
tional Kohn-Sham approach. In spite of this, the integrated
spectral strength might be as good as, or perhaps even better
than the corresponding quantity calculated from the Kohn-
Sham approach—with a given approximation for the xc po-
tential. Better results might arise, in principle, from a favor-
able cancellation of errors between the approximate kinetic
and exchange-correlation terms of the stress tensor. It re-
mains a challenge to extend the present formalism to the
nonlinear regime, as well as including external magnetic
fields and spin-orbit interactions, and, above all, to properly
include retardation effects, which are lost in the elastic ap-
proximation.
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APPENDIX A: STRESS-TENSOR OPERATOR

From the evaluation of Eq. (20) at the Euclidean metrics
8= 0, we get'®1?

(A1)

where
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T,=

= Lm{(& W) (3,%) + (9,97)(0,¥) - —V2n5 }

(A2)

and

§en [t
my 2 oo

1
Xf dNpy[r +Ar',r = (1 = M)r']. (A3)
0

Here \f'(r) is the field operator

po(er") = W) T ()W (e )W (r) (A4)

is the diagonal two-particle density operator and w(r) is the
interaction potential.

APPENDIX B: DERIVATION OF THE FORCE
IDENTITY EQ. (38)

In this appendix we derive an identity which is used in
Sec. IT A to identify the right hand sides of Egs. (36) and
(38). Namely, we consider a functional S[g,,,] of the follow-
ing metric tensor:

(9r

ag 9, ro(§) = £a+ uq(§) (B1)

and prove that the following equality holds:

oS J 5S d (dr,
i Y —| —£\gP*?|. (B2)
5r/.L élga ﬁgﬂ 5gaﬂ aga agﬁ

Note that the identity relates the functional derivative of S
with respect to the displacement to the functional derivative
with respect to the metric/deformation tensor, which physi-
cally means a connection of the force to the stress.

To prove Eq. (B2) we consider a small variation in the
function r,(&):r,(&)—r,(§)+0r, (€. The corresponding
variation of the functional § takes the form

gu(ét) =

P
- J dgiarﬂ(g). (B3)

On other hand, the variation in r,(£) induces the following

variation in the metric tensor: g,,(§)>g,.(§)+dg,.(8).
where

dér, dr,  dr, dor,
08 uv= — . (B4)
d¢, 9¢, ¢, 9§,
Hence the variation in S can be also written as
s5— jdg So. (8) = de (&& r, Or, aéra)
o 08 ~ |\ o -2 T
. O8uv\ 9§, 9§, €, IE,
(B5)

Performing the partial integration in the right-hand side of
Eq. (B5) and using the symmetry of the tensor g,,,, we reduce
Eq. (B5) to the following form:

195106-16



CONTINUUM MECHANICS FOR QUANTUM MANY-BODY...

r?r
f a2 aga< 28, 5gaﬁ) orul8)- (B6)

The direct comparison of Egs. (B3) and (B6) proves the an-
nounced identity in Eq. (B2).

Finally, to make a connection to Egs. (36) and (38) we set
S[gMV]=I:Iu[gW] and take the expectation value of Eq. (B2)

in the state |lZ(t)> Then, linearizing with respect the displace-
ment u(£), we find that the right-hand side of Eq. (B2) be-
comes identical to the right-hand side of Eq. (36) while the
left-hand side of Eq. (B2) is exactly equal to the right-hand
side of Eq. (38).

APPENDIX C: DERIVATION OF EQ. (51)

In this appendix we derive the linearized form of the ki-
netic energy Egs. (51) for the instantaneously distorted
ground state. We start with the general nonlinear expression
for the kinetic energy T[u] in the elastic approximation [see
Eq. (50)]

Tlu]= i J &g 3,0 ¢ (B8 HEP(E.E)) e
(cn

where p(§,£’) is the exact ground-state one-particle density
matrix, and g”*(§) and g(&) are, respectively, the inverse and
the determinant of the metric tensor g,,(£) that is the func-
tional of the displacement u(£), which is defined by Eq. (B1)

Our aim is to expand the functional of Eq. (Cl1) to the
second order in the displacement field, i. e., to the first non-
vanishing contribution corresponding to the linearized
theory. First we explicitly calculate the derivatives in the
right-hand side of Eq. (C1) and set & =£&. As a result Eq.
(C1) reduces to the form

Tlu] = J dfg“”{K

1 -
- %[(aﬂ In \'g)(&,,no) + ((911 In \’E)(&MYZO)]} >

(€2)

n I
+ 250, 0 \g)(3, In )

where ny(€)=p(&,£) is the ground state density and
1 ’ !
K, (&)= g[aﬁ,ﬁ(ﬁg Megr (C3)
Making use of the following representation for V’E,

)

we can write the derivative of In \e“g as follows:
&,  or
i 7B (C4)

ar,,
dyInNg=4,In det( ) = d .
g gﬁ (91’B '“(?fa

It is now straightforward to expand the right-hand side of Eq.
(C4) to the second order in u

ar,
Vg det(
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-
duInNg = 0,0,u,— (Iguy)d,dug. (C5)

Next we consider the covariant tensor g*” (the inverse of
8uv)
=[0y+ dyu, + dyu, + (0,Lua)(<9,,ua)]'1. (Co)

Expanding the inverse matrix in Eq. (C6) to the second order
and expressing the result in terms of the strain tensor u,,, we
get

g = b, Iutte) (Dyug).  (CT)

Finally, we substitute Egs. (C5) and (C7) into Eq. (C2) and
keep terms up to the second order in u. The second-order
contribution to T takes the form

T2 = f dg{K/.LV[4M/.LauVa (

i1y
X(ﬁ,uuvv +_ m ,uvﬂ,u aa

20y + A1ty oy — (

a)(a u )] + _((9;1, aa)

a,n
(C8)

The last term in Eq. (C8) can be identically represented as
follows:

’9”"0( 1))
V2
[4u wa— (0,1,)(0,u,)] = —u @Oty
+ 0,,{ m(é’#u,)[)(ﬂozuﬂ)] . (C9)
8m

The last (total divergence) term in Eq. (C9) vanishes after
integration in Eq. (C8) while the coefficient in front of the
first term in Eq. (C9) and the corresponding coefficient in
first term in Eq. (C8) are naturally combined into the kinetic
stress tensor 7T, 0=2K,,— 5#,,V2n0/ 4m. Hence, inserting Eq.
(C9) into Eq. (C8) and integrating by parts terms propor-
tional to d,ny/2m we arrive at the following final represen-
tation for the linearized kinetic energy of the distorted state:

T2 = f dg{ ,lLV 0[4u,uauva ( a)(&vua)] + 8,/1_},(’)1(‘9#”01&)

X(,utt [(5# va) (Ot ) = (910, (9t 0)]

(C10)

which is identical to Eq. (51). It is worth noting a convenient
feature of this representation—the last term in Eq. (C10)
vanishes in all 1D systems and for homogeneous systems
with ny=const in any number of dimensions.

APPENDIX D: PROOF OF THE ORTHONORMALITY
RELATION FOR SINGLE-PARTICLE TRANSITION
CURRENTS

In this appendix we prove Eq. (80) for one-particle sys-
tems in the absence of a magnetic field. The matrix elements
of the current-density operator is
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Jon(6) = OB == 310 ¥ = 4,V o], (D)

where ¢, ..., 4, are orthonormal eigenfunctions of the one-
electron Hamiltonian, which can be assumed to be real if
there is no magnetic field. Now observe that

Jou(r) =_L¢0V¢n—¢nwo=_LwV<ﬂ)
\,'m 2m o 2m " \ gy
(D2)

and j,o(r)==jo,(r). Also, from the continuity equation we
get

V. (lpOV lpn_ ¢nv ¢O)=_2mwn0¢0¢n' (DS)
Combining these two equations we get
From this we see that
f dr( [2m jo, (r) ) . ( [2m jio(r) )
@0 \ny(r) Wiy \np(r)
1 1 A 2
= V _ . V RS
2m \ W, 0Wr0 drl ( %) :| %(r) ( 1#0)
11 0, ( z/fk)]
== — dr—V . Vi|—
2m \”wnokaJ r o |: 1,1120(1’) o
= \/ %f drlﬂnwk: 5nk? (DS)
Wy

which proves Eq. (80).

APPENDIX E: PROOF OF THE SUM RULES
IN EQS. (81)-(83)

Our starting point is the first-moment sum rule for the
current-current response function (or “third-moment sum
rule” for the density-density response function), which states
that

- lf dwwjmx;/,v(r»r”w) = 2 wnO[j,u(r)]On[jy(r’)]nO'

™Jo
(ED)
On the other hand, the equation of motion in Eq. (72) for the

current density in the elastic approximation can be rewritten
as

f dr,{wzgluva(r_ I'/) _My,v(r7r,)} n ,Z:‘/)jv(r,)
0
- w2 nO(r)Al’M(r), (Ez)
m

where Ay ,=d,V,/(iw), j,=-iwngu,, and
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Mﬂ«v(r’r’) =TT

] 1)
\mne(r)

/=
Vmng(r')

=\ = 00l (Ol () o
nO(r) n

+Uy(r'>]o,1[fﬂ<r>]no}\/$ (E3)

is a Hermitian positive definite operator, which admits a
complete set of orthonormal eigenfunctions. Let us denote by
i, (r) these eigenfunctions and by wi their eigenvalues. The
orthonormality relation reads

f drii\(r) - @/ (r) = &\ (E4)
and the completeness relation is
2 [BOLIEE], = o —r)3,. (ES)
The kernel itself can be written as

M, (e.x') = 2 o[, (0) ], L8, ()], (E6)
N

The equation of motion for the current density can be rewrit-
ten as

Efdl"(wz—wi)[ﬁx(r)]ﬂ[ﬁx(r’)]y\/—m, (1)
\ no(r’)
=’/ ”O—(r)A#(r). (E7)
m

Its solution is obtained by projecting both sides of the equa-
tion along the eigenvector u,. We get

2
mel ) )
ol G2\

A

where the subscript A denotes projection along u,. From this
we obtain

u(r) = nO(r)A (r) +fdr'2 w—i 1o(r)
Ju - m H = w2 _ w)z\ .
x[@ ()], %Ay(r’). (E9)

Hence, the current-current response function in the elastic
approximation is

2
X;ly(l‘,l",w) = nolr) 8,,0(r—1') + > zwh . ny(r)
A W7 — Wy m
X[a ()] La ()], nolr') (E10)

Evaluating the sum rule we obtain
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1 o0
——J dwamXW(rr , )
T

0
——E o0 o1 L0,
= SO, V). (E11)

On the other hand, the first moment sum rule in Eq. (E1) can
be rewritten as

1 [~ 1 — JR—
- —f dowImy,,(r.r' o) = 2—\e’no(r)MW(r,r’)\r’no(r').
m

K]
(E12)

Comparing the last two equations we conclude that

1 (” 1 (”
- —f dowImy(r,r',0) = - —f dwwﬁm)(f,ﬁ(r,r’,w),
) )

(E13)
i.e., the sum rule is satisfied in the elastic approximation.

More pointedly, making use of Eq. (E3) the sum rule can
be written in the form

> w[@, (0], [0,x)],=2m> o, Ufﬂm [Lr,)]”o
X p Vng(r)  \ng(r')

(E14)
from which it follows that

or =2 wyfy.
n

(E15)

where the “oscillator strengths” fz are positive quantities de-
fined as

AmlFM?
= mlF,| (E16)
Wy0
with
P = f driy(r) - D0don. (E17)
Vng(r)
As a final step we prove that
D=1 (E18)

l

for all . This is of course nothing but the f-sum rule

JImy,,(r,r', ) ~

lf” J
-—| dw
770 w

which is manifestly satisfied by )(;lv by virtue of the com-
pleteness relation in Eq. (E5) for @, (r). When applied to the
exact response function the f-sum rule implies that

ny(r) S

- 2m ’u,,(s(l'—l‘,),

(E19)
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[I (1) Joulj (x )]nO ”0(1')
2 Wyo 2m

8,,0(r—r").  (E20)

Then we see that

>

2m|F,

ﬂﬁﬁf ED@hmmMmmnmﬁ]

n Vng(r) ng(r')

:fdrf dr'n(r) 8, 8(r - ')M&M |

\’no(l') Vny(r')
(E21)

which is the desired result.

APPENDIX F: ANALYTIC SOLUTION OF THE ELASTIC
EIGENVALUE PROBLEM IN THE STRONG-
CORRELATION REGIME

In this appendix we present an asymptotically exact solu-
tion of the 1D continuum mechanics eigenvalue problem for
two particles confined by the harmonic potential V
=%mw§x2 and interacting with a soft-Coulomb potential

62

Toriea E

whr=x') = Vix=x")2+a

At the exact many-body theory level the system is described
by the Hamiltonian of Eq. (100). Within our continuum me-
chanics the excitation energies are obtained from the solution
of the following “elastic” eigenvalue problem for the dis-
placement u(x,#)=u(x)e~' [see Eq. (61) in the main text]

1
me’nyu(x) = —m(ﬁ[noﬁiu(x)] =3[ Tydu(x)]+ mw%nou(x)

fdx’[r?zw(x x' ]\I’ (e, x)[u(x) —ux")].

(F2)

Here W(x,x') is the ground-state two-particle wave func-
tion, which in this case coincides with the square root of the
two-particle density matrix, ng(x) is the ground-state density,
and T,(x) is the ground-state Kinetic stress tensor defined by
Eq. (59).

Equation (F2) possesses an analytic solution in the limit
of strong Coulomb interaction e’m*wy> 1 when the ground-
state wave function reduces to the following asymptotic
form:

_ (g + x2)2/2\f§£’i)[ o~ (01 = xp = 50)263)
o\ T

q’o(x1 X)) =

4o -xp+ XO)Z/MZO)]’ (F3)

where €,.=(2%/\3maw,)"2, and xo=(2¢*/mw})"? is the clas-
sical distance between particles, i.e., the distance that mini-
mizes the classical energy of two charged particles in the 1D
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harmonic potential. The corresponding ground-state density
takes the form of two well-separated “blobs”

1 2,2 2,2
no(x) — J’_[e—((x - x0/2)7INZ) + e—((x + x0/2) /)\x)] , (F4)
o VT

where the size .. of the density blobs located at x= *x,/2 is

[~ 172

’/_
2\3mawy

The kinetic stress tensor Eq. (59) for the ground-state wave
function in Eq. (F3) becomes simply proportional to the den-
sity

V3+1
Tolx)=——
o(x) 4

wono(x). (F6)
Another technical observation which simplifies calculations
in the strong interaction limit is that the crossproducts of the
two exponentials in the square brackets in Eq. (F3) are irrel-
evant for the expressions of the type Wo(x,xy)Wo(x',x,) in
the limit of xy\Vmwy> 1. For the two-particle density matrix
entering the nonlocal term in Eq. (F2) this implies the fol-
lowing result:

2\1,(2)()6’)6,) _ zie—((x + x’)z/ﬁei)[e—((x —x' = x)e2)
T

4=+ xo)z/fi)]. (F7)

Simplification of the integral term in the equation of motion
in Eq. (F2) comes from the fact that in the limit of xy\may
>1 the pair-correlation function in Eq. (F7) is peaked at
|x—x'| ~x, (this keeps the particles at a distance close to the
classical value). Hence in the integral kernel the interaction
factor can be approximated as

267 262
r?iw(x—x’)z Wz —3=mw(2). (F8)
x—x Xy

Substituting Egs. (F6) and (F8) into Eq. (F2) and using the
obvious identity

ny(x) = f dx’Z\I’g(x,x')
we reduce the equation of motion to the following form:

m[w? — Zwé]no(x)u(x) =- mw(z)f dx'2‘l’(2)(x,x')u(x’)

b )R]

[3+1
-3y, — A )]

(F9)

Now the following observations are in order: (i) the integrod-
ifferential operator in Eq. (F9) [in fact in the original Eq.
(F2)] is symmetric under inversion of x. Hence the solutions
can be classified by parity u*(x)= *u*(-x). Therefore it is
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sufficient to consider Eq. (F9) only in the region of positive
x; (ii) in Eq. (F9) for x>0 all local terms contain ng(x)
which is a narrow Gaussian located at x~x,/2. Therefore
these terms are nonzero only around x,/2; and (iii) the inte-
gral kernel ‘I’%(x,x’) for x>0 is a product of two Gaussian
peaks, one at x+x’ ~0, and another at x—x' ~ x;, which con-
fines x to the region of the right density blob, x ~x,/2, and
x" to the region of the left blob, x" ~—x,/2.

Therefore for positive x all terms in Eq. (F9) are nonzero
only in the region x ~x,/2 while the integration region in the
nonlocal (interaction) term is confined by the Gaussian fac-
tors to x” ~—x,/2. Note that for this reason the integral term
will contribute with opposite signs to the equations of motion
for the modes of opposite parity.

To further simplify the eigenvalue problem in the strong
coupling limit we proceed as follows. (i) Considering Eq.
(F9) in the region x>0 we make a shift of coordinates
x—x+xq/2, and x' —x'—x,/2. After that because of the
Gaussian factors the integration can be extended to the whole
axis. This completely eliminates x, (i.e., the coupling con-
stant) from the problem, as it should be in the strong cou-
pling limit; (ii) go to dimensionless coordinates £=x/\.,, and
& =x"/\,; and (iii) divide everything by the ground-state
density n, [which is simply a Gaussian located at the origin
after the above shift, n0(§)=e‘§2/ V).

The result of these three steps is the following dimension-
less equation of motion:

o’ N 3€§2(92[€_§2(92ui] 3\6 PR R
— -2 U - =——p@= - —— "¢ dle™ du~]
) (V3+1) 2

_ \E+ 1 Jm &

T
w3

e~ ((B+DIAB)E + (3113 + 1)§)2ui(§,)_

(F10)

To solve the eigenvalue problem in Eq. (F10) we employ the

following identities for Hermite polynomials:*’

e o (e aH) = 2kH,, ¢ (e PH,) = 4k(k - 1)H,,

(F11)
a+1 * ’
2\J’;T dy'e~(a+ D2/4a)(x" + (a - l/a+1)x)2Hk(xr)
a—1\¥
=(- 1)k< ) Hy(x). (F12)
a+1

From the identities (F11) and (F12) we see that Hermite
polymomials are the eigenfunctions of each of three terms in
the integrodifferential operator (both for odd and for even
modes) on the right hand side in Eq. (F10). The correspond-
ing ,gigenvalues [one should apply the identity (F12) with
a=v3] are
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+\2 I~ k
dk(k -1 -1

(‘”—") P l+3\r’§ki(—1)k<\r )
o (\N3+1) V3+1

(F13)

where k=0,1,2,... is the quantum number labeling the
eigenmodes (for every n there are two modes of opposite
parity). Note that the second, third, and fourth terms on the
right-hand side of Eq. (F13) are, respectively, the eigenval-
ues of the first, second, and the third terms on the right-hand
side in Eq. (F10). With a little algebra we simplify the eigen-
values of Eq. (F13) as follows:
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|

X+ X2
A

X —=x0/2

. 2
no(x)u (x) ~ e_((x_xo/z)z/)\“)Hk( N

+ (= 1)ke (G xo/z)z/xi)Hk< ) )

(F15)

Finally, the displacement eigenmodes normalized by the con-
dition

wp = wo[2+3 3k + 6k(k—1)(2 - \E) F(-D2- \E)k]l/Z' L.
(F14) dxn()(x)uk ()C)Ml ()C) = 6](1 (Fl6)
In the physical units of length the eigenfunctions in the
whole space take the form can be written as follows:
J
o~ (= xg/2\0) Hk( x =X/ 2) + (= 1kt x/2M\2) Hk( X+ xo/ 2)
+ 1 o Aeo
i () = V2K (= x02IND) 4 o=((x +xg/2IN3) ' (F17)

Equations (F14) and (F17) give the asymptotically exact solutions of the elastic eigenvalue problem in the limit of strong
correlations. In Sec. IV C we have used this solutions to control the accuracy of our numerical results.
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